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1. PRELIMINARIES

Approximation by piecewise polynomials of fixed degree and free knots.
where only their total number is prescribed in advance, has been studied by
several authors (e.g., [4], [3], [1]) as to quantitative behaviour as the number
of knots tends to infinity. This kind of approximation can be generalized
by varying also the degrees from knot to knot and only fixing the total number
of all parameters. Our attention to this was drawn by H. G. Burchard who
suggested the study of this more complex problem, first for very smooth
functions. In particular, he raised the question whether for analytic functions
the optimal approximation would be given by pure polynomial approxima­
tion. In this paper, we give, essentially, a positive answer to this.

We need the following notation:

En(f; [a, b]) = inf III - p II , En(f) =: En(f; [-1, 1]),
PEIIn _ 1

where II II is the sup-norm and nn-l the space of polynomials of degree
~ n - 1. To define spaces of piecewise polynomials, we consider pairs
(Lt, Z) where Lt is a partition of [-1, 1] into subintervals {Ij}f~l and Z =

(m1 ,... , mk) a corresponding vector in Z+". and set

Since we want to fix only the total number of parameters, we introduce

P(k, Z) = UP(Ll, Z).

(1)

(2)

The union is over all partitions Lt of [-I, I] into k subintervals and for a
fixed Z E some Z(k, m) where, for k ~ m,

Z(k,m) = jZEZ+k
: timi ~ml.
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Finally we set
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pm = U U P(k, Z).
k<;m ZEZ(k,m)

(3)

Our aim is to investigate dist (f, pm).

LEMMA I. (a) There exists an element s* E pm such that

Ilf - s* II = dist (f, pm)

The corresponding pair (Ll, Z) is called an optimal partition.

(b) Every optimal partition is balanced, in particular

Emi(f; Ii) = dist (f, pm)

for the segments Ii and degrees mi of the optimal pair (Ll, Z).

Proof Denote by Yl ,... , Yk the right hand endpoints of a partition Ll
into k subintervals and define, for Z E Z(k, m),

G(Yl ,... , Yk) = inf II! - s II .
SEP(4,Z)

(Coalescence of some of the y;'s is admitted and to be interpreted in the sense
that the corresponding mi do not appear). G is a continuous function on the
compactum [-I, I]k because Eif; [a, b]) is a continuous function of a, b.
Hence G takes its minimum which means that there is i E pm such that

Ilf- ill = inf Ilf - s II·
sEP(k,Z)

Since the union in (3) is taken over a finite set, assertion (a) follows. Part (b)
follows from the continuity of En(f; [a, b]) in a, b.

We remark that balancedness of a pair (Ll, Z) is not sufficient for being
optimal, because this is a property of the partition and the influence of Z has
still to be taken care of. This is just why we concentrate in the following
sections on classes of smooth functions to obtain more information about the
possible Z. Further examples in Section 4 show that smoothness alone cannot
characterize entirely the type of optimal partitions.

2. ApPROXIMATION OF ENTIRE FUNCTIONS

As a first step concerning information about the optimal partition we have

LEMMA 2. Let f E Coo [-I, I]. Then on each subinterval A of [-1, 1) the
restriction of a sequence of optimal partitions {(Ll m , Zm)}~~l to A must
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contain segments of LIm for which the corresponding components of Zm tend
to 00, as m --+ 00 (or f must coincide with some polynomial on A).

Proof Suppose the assertion were not true. Then there exists k such that
all components of Zm corresponding to a segment of LIm having a point in
common with A remain bounded by k as m --+ 00.

Now by classical approximation theorems on pure polynomial approxima­
tion it is known that EmU) is smaller than O(m-a) for each a > O. This would
imply that we have for A a sequence of partitions consisting of at most m
knots and corresponding piecewise polynomials Sm of maximal degree k
such that Ilf- Srn IIA = O(m-a); for each a > 0, in particular m" Ilf- Sm IIA --+ 0
for m --+ 00. But by a saturation result of Burchard-Hale [4] this implies
thatfis a polynomial of degree k on A.

Now we consider the following subclass of entire functions

where :t' is defined by

:t' = l{an}:~o: for each E > 0 exists n(E) such that

This means that we consider only entire functions with a regular decrease of
the coefficients in the Taylor expansion. An example is an = e-n2. Note
that {an} E :t' implies an = anU) =1= 0 for all n > no (otherwise f would be a
polynomial). One may also assume an =1= 0 for all n E N since otherwise
one can consider! = f + Po where Po E IIn is an appropriate polynomial_ 0

such that an(f) =1= 0 for all n E N.
One has the following characterization.

LEMMA 3. A sequence {an} belongs to :t' iff

i an I = e-f(n)n (4)

where t(n) increases to infinity as n --+ 00.

Proof Clearly each {an} satisfying (4) belongs to :t'. Now let a E:t',
an = e-nt(n) so that

en[tln)-tln+l)]

et( n t 1 ) (5)
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where En -)- 0, n -)- 00. Assume now that there exists a sequence {nk} such that
t(nk + I) :0:;;: t(nk) and t(nk + I) < M for kEN. This would lead to a contra­
diction to (5) since then for k large enough

enk[t(nk)-t(nk+1)]

et(nk+1 )

I
> !.i'e

Moreover, using Lemma 3, (4) and the definition of 2 it is easy to prove

COROLLARY 1. Let {an} E 2, E > O. Then there exists n1(E) such that
I exnlexn- q I :0:;;: E

q for q :0:;;: n, n ~ n1

Iff is an analytic function

Cf) Cf)

f(x) = L akx" = L CkTix)
k~O k~O

represented by its Taylor-series and its Fourier-Tchebycheff-series respec­
tively the following well-known formula holds (cf. Bernstein [2, p. 116])

C I~. (k + 1 + 2j ) 2-2 'k+1 = 2k f.oI ak+1+2i . J.
J=O }

A further simple result in [2, p. 115] leads to

PROPOSITION I. fE Go implies

(6)

Here Pn '"" qn means that for some fixed constants A, B, we have for all n

IPn i :0:;;: A I qn i, i qn i :0:;;: B IPn I·
We shall make use of this to estimate the best polynomial approximation

of f on arbitrary sub-intervals [ex - h, ex + h) C [-I, I], using the trans­
formation

g(ex, h; t) = g(t) = f(ex + ht),

so that En+1(g) = En+1(f; [ex - h, ex + h]).
One easily gets

Cf) 00

g(t) = L ak(ex + ht)" = L (Ak(ex) hk) t"
k=O k=O
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For {ak} E.fe one can find, again following Bernstein's arguments, constants
C1 , C2 independent of <X such that

(7)

i.e. Ak(<x) E .fe. By (6) one gets for the Tchebycheff-coefficients

C ( h) - I ~ A ( ) hkH+2i (k + I + 2j ) I
k+l <X, - 2k L. k+1+2i <X • 22i

J~O J

so that we can again conclude (as in (7»

and we get by Proposition I,

PROPOSITION 2.

This leads to

THEOREM 1. fE Go implies for m large enough that the optimal partition
(LIm, Zm) in dist (J, pm) is unique and realized by pure polynomial approxima­
tion, i.e. Llm={-I,I},ZmEZ{l,m) and dist (J,pm)=llf-s*11 with
s* EIlm _ 1 .

Proof Suppose an optimal partition has two neighboring subintervals
I h . = [<Xi - hi , <Xi + hi] with corresponding degrees ni (i = I, 2) and
n; + n2 = n. By Lemma I we have En (f; Ih ) = En (f; Ih ). We now assume

1 l' 2 2

(9)
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In view ofProposition 2 we may assume without loss ofgenerality hI + h2 = I
and obtain from (9) by (8)

and from this

(lOa)

(lOb)

We show then that this leads to a contradiction by proving that

(II)

for n sufficiently large and all nl with n2 = n - nl < nl ~ n.

Now from the definition of the class Go and from Corollary 1 it follows
that

(
c€ )n,!(n-n,)

1- -
~ 2
~ (~€) (n-n1l/n1

for any € > 0 provided n ): neE), or

for any 0 < a < 1 provided n large enough.
But it is clear that lim",_>oo D(x) = I and for a small enough

for all x, I ~ x ~ n (or n2 < nl ~ n) since the term in brackets is positive
for such a. Hence (II) must hold.

We remark that the crucial point in the proof is knowledge of the exact
relation between En(f) and En(f, I) for some subinterval Ie [-I, I],
furnished by the properties of!l' and Go . But next we show that the smooth­
ness offcan be reduced further while still getting an analogous result.
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3. ApPROXIMATION OF ANALYTIC FUNCTIONS

7

We consider functions/which are analytic in some region D of the complex
plane containing the intervall [-I, I]. p(x) denotes the radius of convergence
when

CD

fez) = I an(x)(z - x)n
n~O

is evaluated at a point XED.
We define the functions

Mk(x) = sup p(x)i I alx) [
I~k p(X)k I ak(x) I

and

M(x) = sup Mk(x).
k

Let

A O = {f(z); M(x) < oo;xE[-l, I]}.

We need

PROPOSITION 3. Let / E Ao . For any z in the complex disk D(x) with
center x and radius p(x) there holds (for aix) =1= 0)

I
ak(z) I ~ c . p(X)k+l
ak(x) " [p(x) - I z - X 1]k+1

with a constant independent 0/ z and k uniformly in x E 1 C [-1, 1].

Proof Since Mk(x) and M(x) are lower semi-continuous (cf. [5, p. 39],
the set

Vn = {xE1: M(x) > n}

is open for each n E N. Then at least one Vn cannot be dense in I since
otherwise (by Baire's theorem) the intersection of all Vn would contain one
point x' in 1 for which M(x') = 00 contradicting the assumption. Hence
there exists a closed (open) subinterval of Ithe points of which do not belong
to a certain Vn , i.e., for which M(x) is uniformly bounded.

Repeating the process we find an open covering by such intervals of 1.
Since I is compact we can find a finite subcovering so that M(x) is uniformly
bounded on I. This gives

(12)

uniformly in j ~ k and x E 1.
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Now for Z E D(x):
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and by (12)

I
ak(z) I I 00 j! (I z - x I )i-k

ak(x) ~ C k! i~k (j - k)! p(x) .

Since

I dk I) I
= k! da k (-r=a = (1 - a)k+l

it follows

I aiz) I~ C I = C p(x)k+
1

ak(x) (I _ I z - x I )k+l (p(x) - I z - X I)k+l .
p(x)

Remark. M(x) < 00 is equivalent with Ialx)/ak(x) I ~ C(x)p(x)k-i,
j:;;::' k, Tlk E Nand (12) just means C(x) ~ M on I. There are evident examples
of analytic functions which have this property as well as those which do not.

The set Ao corresponds to the above introduced subset Go of entire func­
tions since it picks those analytic functions which have a regular decrease in
their power series expansion.

THEOREM 2. Let fE Ao and infxE[_l.1) p(x) > O. Then the number of
subintervals of the optimal partitions (Lim' Zm) remains bounded as m -+ 00,

i.e., one has essentially pure polynomial approximation.

Proof We assume that [a, c] and [e, b] are two intervals of a balanced
optimal partition with degrees n1 and n2 , respectively, and n = n1 + n2 •

We suppose

(13)

where En = En (I; [a, e]) and En = En (I; [e, b]). Basic for the following
] 1 2 2

is now the well known equation

En = 2[(b - a)/4]n I an(z)j
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for some Z E [a, b] where we recall an(z) = pn)(z)/n!. With similar equations
for En and En (13) implies

1 2

Proposition 3 and (13) then yield from this (I b - a I small enough in compa­
rison to inf", p(x))

(14a)

and

(14b)

For brevity we introduce the notation 'Y = n1/n and (i = 1, 2)

[
I z X I](n+l l /n

P· = p(x.) e . = I - ~ i e l /"'I. t, n,'l •
Pi

Then taking the n-th root in (14, a, b) we obtain

[
b - a][ 4 ],,-1--- --- > 1-"ec - a c - a PI n.l

[ b - a J[b - c J"b - c --4- > P2"en ,2 .

With the abbreviations 0 = (b - a)/(c - a) and X = (b - a)j4 these
inequalities are:

and with v = PI/X, W = P2/X, x = y/(I - y) we have:

w"'ell (I-,,)
0< n.2

wXel/(l-,,) _ I .
n.2

(ISa)

(lSb)
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Now, if v ~ w, v can be replaced by w in (15a). Since w"'l(w'" - I) decreases
for fixed x and increasing w, (15b) remains true with wreplaced by v in case
v ~ w. By analogous arguments with respect to en •l and en ,2 we get the
following couple of inequalities

(16)

where

D = min ( 4p(xl )
b - a '

Inequalities (16) are a consequence of our initial assumption (12). So we
want to show a contradiction to (16) by proving that

(17)

for n large enough all 0 ~ y ~ 1 (actually 0 ~ y ~ 1/2 suffices since without
loss of generality nl ~ n2), and v ~ Vo' The latter condition is satisfied if
inf"'E[_l.l] 4p(x)/(b - a) ~ Vo' This means that for b - a small enough
(depending on inf p(x) and the total number n of parameters) pure poly­
nomial approximation on [a, b] is optimal which is the assertion of the
theorem.

In order to prove (17) we consider the function

(ve
n
)l21'-ll /1'(1-1')

(ven)l/(l-1') V-I - I .

One easily verifies for v sufficiently large (such that ven > 1) lim1'~o H(y, v) =

0, or more specifically

H(y, v) < t; v ~ Vo' (18)

Furthermore we choose Vo so large that

H (~, v) = ve ~ I < 1, v ~ Do·
n

(19)
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Finally elementary differentiation yields

11

Now for v sufficiently large

so that (ojoy)H(y, v) > 0 on [Yo, t] and v ~ Vo provided Vo sufficiently
large. This together with (18) and (19) establishes (17).

4. FINAL CONSIDERATIONS

The assumptions in the definitions of the subclasses Go and Ao of entire
and analytic functions, respectively, allowed us to estimate En(f; II) by
En(f; 12) for intervals 12 C II . It is not known how far these for the proofs
of Theorems 1 and 2 essentially needed hypotheses can be relaxed.

Let us add some further remarks concerning the question when poly­
nomial approximation is the unique optimal approximation on some interval
[a, b]. First, it is clear that smoothness alone cannot be sufficient, e.g., the
condition

Eif; [a, bD < En- 1(f; [a, bD

is necessary. A somewhat stronger motivation for considering only subsets of
classes of smooth functions is given by the following simple proposition
which provides a sort of converse to the above theorems for the subset

PROPOSITION 4. Let f E V. If there is some interval [a, b] ~ [-1, 1] such
that (for m sufficiently large) polynomial approximation is best (to achieve
dist (I, pm)), then f is analytic on [a, b].

Proof We compare En(f; [a, bD = if(n) with En (f; II) where we take
1

n1 = [nj2] and II = [a, (a + b)j2]. By definition of V, En (f; II) <
1

CEn (f; [a, bD 2-n1 , so that
1
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Now, ifI were not analytic on some region containing la, b], then, for any
f3 > l, limn_Ho f3ntf;(n) = 00. Hence, for sufficiently large n

En,(f; II) ~ Ctf;(n/2)(f3/v'2)n tf;(n)

~ Cll/lioo (f3/v'2)n Eil; la, bD

< En(f; la, bD,

which is a contradiction to the assumption.
The assumptions on I given in the definition of V are similar to those of

Theorems I and 2. So the question arises whether for the class V polynomial
approximation is best if and only iflis analytic. We were not able to answer
this. Instead we conclude with an example showing that without additional
assumptions the type or the uniqueness of the optimal partitions for dist
(f, pm) need not be related to the smoothness ofI at all.

The example may be described as follows:
Let g(O) > I be odd and define g(k + I) = (g(k»3 for k = 0, 1, 2,....

Let {Ek} be a monotone sequence which tends to zero and J k = Ek_1 - Ek .

Then the function

00

f(x) : = L: ,~:hTg(k)(X),
k~1

where Tk(x) = cos k arccos x is well defined and belongs to C[-I, 1].
Furthermore for g(k) ~ n < g(k + 1)

En+l(f) = II f LJjTg(j) II = Ek'
j~k+1 1 00

(20)

Now, Rk(x) = :L;:k+1 LJjTg(j)(x) has g(k + 1) + 1 alternating extrema. For
the pure polynomial approximation E9(k)+l(f) g(k) + I parameters are
needed. So, in order to realize this error or even a better one by real piece­
wise polynomials in Pg(k)+l, there are at most g(k) + I intervals I j . The
definition of g(k) implies that there is at least one interval I j which contains
more than g(k) + I extrema of Rk(x), i.e., for i ~ g(k), by (20),

hence

kEN. (21)
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Now, consider dist (J, P9(k+l)). Let ..:19(k+l) define intervals II ,... , I; so that
the corresponding polynomials have degree lkl, ... , lki, i.e.,

Then dist (J, pg(k+lJ) can be smaller than Eg(k+l)[f] only if II contains at
most lk1 + 1 extrema of Rk(x). The same has to be true for 12 , ... , 1;_1 .
Hence I; must contain at least

g(k + 1) + 1 - lk1 - ... -1~-1 - (j - 1)

= g(k + 1) + 2 - (fk1+ ... + 1~-1 + j)

alternating extrema of Rk(x). But since the corresponding polynomial has
at most degree lk i = g(k + 1) - Uk1+ ... + 1£-1 + j) the error E9(k+l)(f)
is not improved and

This yields

dist (J, pn) ? dist (J, P9(k+ll) = E9(k+l)(f) = E9(k)+l(f) = €k

for all g(k) < n :'( g(k + 1), which together with (21) shows that pure poly­
nomial approximation is optimal. This is independent from the choice of
{€k} and hence from the smoothness off So f may be analytic or even entire
for rapidly decreasing {€k}, or in contrast for slowly decreasing {€k} even not
differentiable. Note that En(f) does not decrease so regularily as is affirmed
by the hypothesis in Theorems 1, 2.
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